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Abstract
The dialogue of a large number of American feature films of the last 30 years is analysed with the stylometric tools contained in
the R-stylo package. Various interesting results showing the capabilities and restrictions of this statistical package emerge.
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1. Introduction

The package R-stylo, devised by Maciej Eder and his
associates, (Eder et al. 2016) brings together a number
of established statistical multivariate algorithms under
a menu control interface. The algorithms covered are
bootstrap consensus networks, delta classifier, k-NN
classifier, principal components analysis, and support
vector machines (SVMs). It has been used for analysing
literary texts, and has also been extended to analysing
the dialogue of television shows in an impressive article
by Byszuk (2020) and to film dialogue by Hołobut and
Rybicki (2020). There has apparently been no earlier
work on using these methods of statistical analysis on
film dialogue, with the exception of a paper by
Buckland (2019). This article is a demonstration of
R-stylo’s application to analysing the dialogue in
American feature films of the last couple of decades,
and takes a different approach to the article by
Hołobut and Rybicki just mentioned, which is only
concerned with generic classification of films using
their dialogue. In their particular application, Hołobut
and Rybicki are quite successful at classifying films by
genre using the R-Stylo Consensus Tree algorithm,
combined with the Gephi programme.

The classification of films by genre by the film indus-
try has existed for almost the entire history of cinema,
and has always been a bit fuzzy, as Hołobut and
Rybicki remark. In recent times, it has got even fuzzier
under the influence of the film fans contributing to the
listings in the International Movie Database.

The texts I use in this article are gathered from the
recordings of the subtitles from DVD copies of films

and TV shows collected by opensubtitles.org. These
subtitle records are not a perfect reproduction of the di-
alogue spoken in films, as briefly mentioned in the arti-
cle by Joanna Byszuk. Their main shortcoming is that
not all the words spoken in a film are subtitled, to al-
low for slow readers, and also to prevent the text over-
flowing the picture when a lot is said quickly in a
scene. Also, a very small proportion of words are
changed in pursuit of the same objective.

I give three examples from films with a large amount
of dialogue to indicate the order of this effect. For Mr
Deeds Goes to Town (1936) and His Girl Friday (1940)
all the dialogue is subtitled, with just a few word changes.
These subtitles are taken from new restoration disks
which treat the films as classics. The idea is presumably
that all connoisseurs want to see the complete dialogue,
and also have a high reading speed. For The American
President (1995), on the other hand, 7 per cent of the dia-
logue is not subtitled, and I believe that is more typical.

The second problem is that the subtitles can include
extra text that is not spoken in the film. This is either the
words of popular songs heard on the sound track or the
description of significant sounds also heard on the sound
track. The use of sound description in the subtitles for
DVDs has only really appeared in the last couple of deca-
des, and is nowadays most prominent in the subtitling of
television drama. The films I am considering contain little
of this, and in any case, I have removed the transcrip-
tions of song lyrics from the films in my corpora. Even
further, a quick test with the subtitles file of one recent
film shows that removing the audio description text
makes no difference to the classification of that film by
R-stylo. To regain the complete and pure text of only the
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words spoken in a film requires a large expenditure of
time and/or money, and the intent of this article is to
show that it is possible to get good authorship discrimi-
nation without it. In any case, working with incomplete
texts is an established part of literary stylometry.

There are two corpora I will work with. The first is
all the American commercial feature films released in
the USA in 1999 for which I could obtain subtitles, to
the total of 80 films. The important point about this se-
lection is that none of the writers who worked on these
films contributed to more than one of them. The sec-
ond corpus is a selection of films made by prominent
writer/directors of the last few decades. The reason for
concentrating on the scripts of writers who direct their
own films is that there is much less likelihood of the
production company interfering with the script by hav-
ing other writers work on it uncredited.

As a preliminary to my investigation, I apply the
other R-Stylo algorithms not used by Agata Hołobut
and Jan Rybicki for generic classification. The result of
using principal components analysis on eighty films
from 1999 (titles available on starword.com) is shown
in the following graph. The R-stylo algorithms ignore
the prefixes to the dialogue file titles during their work-
ing, but afterwards add the colours to the finished
graph by using the file prefixes.

(Although the Stylo programmes were set at 1,200
MFW, for some reason the programmes give 1102
MFW on all the graph captions.)

The dialogue files for the films have been generically
classified by myself, as indicated by the prefixes to their
names, along obvious lines. That is, drama, comedy
(com), romantic comedy (romcom), thriller (thrill),
horror (horr), and so on, with different coloured letter-
ing for each. It can be seen that the genres mostly over-
lap on the graph, and their groups are mostly centred a
bit above the zero point. However, there is the begin-
ning of separation for the action and science fiction (sf)
categories, placing them towards the negative region of
the second principal component. The noticeable out-
liers, which are Anna and the King and Wing
Commander, deserve a little discussion.

A quick visual scan down the dialogue text for Anna
and the King shows that the English spoken by the
Siamese characters entirely lacks articles, and this
shows up in the recorded word frequencies using the
AntConc concordance programme (Anthony 2017).
The frequencies for ‘the’ and ‘a’ are down by 21 per
cent and 9 per cent, respectively, from the norm for the
whole corpus. So nothing new is being learned on this
point from R-stylo, but in the case of Wing
Commander, the peculiarity of its dialogue is not quite
so obvious. A comparison of the Wing Commander di-
alogue keyword frequencies with the norm for the
whole 1999 corpus shows a marked deficiency in the

personal pronouns ‘you’ and ‘I’, which in Wing
Commander are 34 per cent and 35 per cent below the
norm for the whole corpus. The reason for this does
not leap out at me from the dialogue itself, but more
concordance inspection of it shows that the use of
‘you’ is mostly to give orders from a superior to an in-
ferior, whereas in normal drama it is more often used
to elicit information from the person being addressed.
In other words, the film is mostly lacking ordinary
emotional interaction between the characters. It is little
more than a live action version of the ‘shoot ‘em up’
video game on which it is based, which has hardly any
plot of the ordinary dramatic kind. The film was unsur-
prisingly a commercial failure. Other action films in
the sample are also displaced down into the bottom
half of the graph along the PC2 axis for the same rea-
son, but in a less extreme way. We have now gone be-
yond R-stylo, into the region where the meanings of
words matter.

Returning to R-stylo, I need to mention the settings
of the package that I am using for all of this investiga-
tion. These are—0 per cent culling with no pronoun de-
letion, list cut-off of 5,000, and the MFW settings are
0–1,200 with increments of 100, starting at frequency
rank 1. The upper limit of the MFW setting was deter-
mined by trying values from 100 to 1,900, with the
best discrimination achieved at 1,200. For general liter-
ary texts, the preferred setting for this kind of statistical
classificatory programmes appears to be 2,000 words.
My results show that film dialogue has a much reduced
vocabulary compared with literary writing, and indeed
it can be readily observed that in literary writing the ex-
tended vocabulary occurs in the descriptive parts of the
text, and not in the dialogue.

Word digrams and trigrams proved much less useful in
script classification. I tried working with longer and lon-
ger groups of words up to pentagrams (five-grams), but
classification gets worse and worse the longer the group.
In the statistics I use classic Delta, and for PCA I only use
correlation, not covariance, and a consensus strength of
0.5 for the consensus tree. After many trials, I find that
other settings make hardly any difference to the results.
This includes the other possible Delta settings, and so
I use classic Delta throughout. The reason for Delta set-
tings other than classic Burrows not making any differ-
ence in my application of the algorithm is given by the
investigation ‘Understanding and explaining Delta meas-
ures for authorship attribution’. by Stefan Evert et al.
reported in Digital Scholarship in the Humanities, Vol.
32, Supplement 2, (2017). Most of their tests show little
difference between the different forms of delta, up to
numbers of most frequent words (nMFW) of 2000. The
marked divergence between results for the different deltas
only occurs for nMFW values greater than 2,000.
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Applying my settings to the cluster analysis of the
sample from 1999 is given in Fig. 2.

As you can see, there is little clear separation by genre
in general, though the science fiction films are mostly
grouped fairly closely together. One obvious thing that
the dialogue texts of the science fiction films have in com-
mon, which is missing from other films, is the basic vo-
cabulary of space technology. Making a comparison
using AntConc, and looking at the 100 most common
keywords from the science fiction sample, while ignoring
proper nouns, most of the words come from present-day
space travel, like ‘ship’, ‘shuttle’, ‘fuel’, ‘coordinates’,

‘crew’, ‘commander’, ‘power’, ‘earth’, ‘orbit’, ‘surface’,
‘planet’, ‘rover’. Of the other keywords inside the 100
most common, only ‘jump’ (meaning space-time jump)
and ‘dimension’ come from the common vocabulary of
the imaginary world of science fiction.

An obvious feature of Hołobut and Rybicki’s work is
that they are only using six genres in their classification,
and excluding the most basic and common genres of
drama and comedy.

So for comparison, I now rerun my use of the Stylo
cluster algorithm on a reduced corpus of thirty-three
films that only includes the science fiction (sf), fantasy
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(fant), horror (horr), action (action), thriller (thrill),
and romantic comedy (romcom) (Fig. 3).

This shows better separation of these six genres, though
it is still not quite as good as the result of Hołobut and
Rybicki’s method using Consensus Tree and Gephi.

Having established that R-stylo does not perform
well in my tests for separating out scripts by genre, the

next step is to look at how well it does in differentiating
authorship. This application has not been previously
tested.

2. Authorship

To investigate authorship, I work with a corpus of the
dialogue from films from the last three decades, most
of which were both written and directed by a group of
successful American film scriptwriters, though some
scripts are included that were directed by others, al-
though written by the named author. In nearly all these
examples, the writer–directors concerned had sufficient
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standing in the films industry to rank as producers of
these films, and hence prevent the usual studio interfer-
ence on their scripts. I have also included a group of
the earliest ‘mumblecore’ films (prefix ‘mum_’), whose
significance will become clear in due course.

Performing a principal components analysis on this
author corpus produces the correlation matrix Fig. 4.

This shows more discrimination and grouping for
the different authors than Fig. 1 did for genres.
Nevertheless, there is a pile-up near the centre involv-
ing Marc Lawrence, Woody Allen, M. Night
Shyamalan, and Charlie Kaufman. This is a surprise, as
I think that most people, like myself, subjectively think

of Shyamalan, Kaufman, and Woody Allen as having
distinctive ‘voices’, so seeing their films mixed up with
each other, and also those of Marc Lawrence is a
shock. However, a little further thought suggests that a
lot of the distinctiveness of Shyamalan, Kaufman, and
Allen’s films come from their special plot conceptions.
Aaron Sorkin’s films are tightly grouped on the edge of
this central cluster, and almost separated from it, which
is subjectively more satisfactory. Mamet’s scripts are
edging away from the main central cluster, and over-
lapping the tighter group of Gilroy-scripted films. The
obvious outliers are Shyamalan’s The Village, and
Mamet’s Heist. The first of these is unusual in having
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the plot take place entirely inside a cult, rather than in
ordinary society, as in his other films. This is reflected
in the dialogue, with ‘not’ and ‘will’ in the imperative
form appearing at about three times the norm for
Shyamalan films, and also with respect to their norm in
the whole corpus. David Mamet’s Heist is way down
south past the group of Gilroy films, and gets there by
a preponderance of words from the rough action genre,
such as ‘yeah’, ‘gonna’, and ‘go’, if one ignores the
words that are specific to this story. The fact that Jason
Bourne is part of a tight cluster with the other Bourne
films, despite not being written by Tony Gilroy, shows
the importance of genre, and indeed subject matter,
over authorship in this case.

Again applying the cluster analysis tool with the
basic settings already mentioned, we get (Fig. 5).

The separation of scripts by their authorship is
nearly complete, with a few exceptions that are infor-
mative in themselves. David Mamet’s scripts (Mam_)
are broken into two groups, and the Steven Zaillian
scripts (Zaill_) are broken into three groups, with All

the King’s Men and A Civil Action place next to the
group of Aaron Sorkin films, and the other two
Zaillian films placed separately into each of the two
groups of David Mamet films (Table 1). The division
of the Mamet films into two separate groups is itself
an outright failure of the cluster analysis to identify
an author. The least unsatisfactory reason that I can
give for this is that the larger group of Mamet films,
including Heist and Hoffa, have more violent crimi-
nality in them. The fact that the Jason Bourne script is
firmly classified with the other Bourne films scripts, de-
spite not being written by Tony Gilroy, is a significant
demonstration of the weakness of these methods in at-
tributing authorship. It is not quite so surprising that
Zaillian’s script for Hannibal is paired at the final level
of clustering with Mamet’s unproduced script for that
same film. I will return to this important occurrence
later.

An obvious contributing factor to the success of classi-
fication by author here is that many of the writers con-
cerned only work in one genre (or sub-genre) of film.
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Table 1. Author Dialogue Corpus.

Dialogue file name Film title Year Director Script writers

Baum_FrancesHa.txt Frances Ha 2012 Baumbach, Noah Baumbach, N. and Gerwig, G.
Baum_Greenberg.txt Greenberg 2010 Baumbach, Noah Baumbach, N. and Leigh, J.J.
Baum_MistressA.txt Mistress America 2015 Baumbach, Noah Baumbach, N. and Gerwig, G.
Baum_Squidand.txt Squid and the Whale, The 2005 Baumbach, Noah Baumbach, N.
Gilr_Beirut.txt Beirut 2018 Anderson, Brad Gilroy, Tony
Gilr_BourneId.txt Bourne Identity, The 2002 Liman, Doug Gilroy, T. and Herron, W.B.
Gilr_BourneLeg.txt Bourne Legacy, The 2012 Gilroy, Tony Gilroy, T. and D.
Gilr_BourneSup.txt Bourne Supremacy, The 2004 Greengrass, Paul Gilroy, T. and Ludlum, R.
Gilr_BourneUlt.txt Bourne Ultimatum, The 2007 Greengrass, Paul Gilroy, T. and Burns, S. and

Nolfi, G.
Gilr_Duplicity.txt Duplicity 2009 Gilroy, Tony Gilroy, T.
Gilr_JasonB.txt Jason Bourne 2016 Greengrass, Paul Greengrass, P. and Rouse, C.
Gilr_MichaelC.txt Michael Clayton 2007 Gilroy, Tony Gilroy, Tony
Kauf_Adaptation.txt Adaptation 2002 Jonze, Spike Kaufman, Charlie and Orlean,

Susan
Kauf_Anomalisa.txt Anomalisa 2015 Johnson, D. and

Kaufman, C.
Kaufman, Charlie

Kauf_BeingJM.txt Being John Malkovich 1999 Jonze, Spike Kaufman, Charlie
Kauf_Confessions.txt Confessions of a Dangerous

Mind
2002 Clooney, George Kaufman, Charlie and Barris,

Chuck
Kauf_EternalSun.txt Eternal Sunshine of the

Spotless Mind
2004 Gondry, Michael Kaufman, C. and Gondry, M.

and Bismuth, P.
Kauf_HumanNat.txt Human Nature 2001 Gondry, Michael Kaufman, Charlie
Kauf_SynecdocheNY.txt Synechdoche, New York 2008 Kaufman, Charlie Kaufman, Charlie

I’m Thinking of Ending Things 2020 Kaufman, Charlie Kaufman, Charlie and Reid, Ian
Lawr_Congenial2.txt Miss Congeniality 2 2005 Pasquin, John Lawrence, Marc
Lawr_DidYouHear.txt Did You Hear About the

Morgans
2009 Lawrence, Marc Lawrence, Marc

Lawr_Forcesnature.txt Forces of Nature 1999 Hughes, Bronwen Lawrence, Marc
Lawr_LifeMikey.txt Life with Mikey 1993 Lapine, James Lawrence, Marc
Lawr_MusicLyric.txt Music and Lyrics 2007 Lawrence, Marc Lawrence, Marc
Lawr_OutOfTown.txt Out-of-Towners, The 1999 Weisman, Sam Lawrence, Marc and Simon, Neil
Lawr_Rewrite.txt Rewrite, The 2014 Lawrence, Marc Lawrence, Marc
Lawr_TwoWeekNot.txt Two Weeks Notice 2002 Lawrence, Marc Lawrence, Marc
Mam_Glengarry.txt Glengarry Glen Ross 1992 Foley, James Mamet, David
Mam_Heist.txt Heist 2001 Mamet, David Mamet, David
Mam_Hoffa.txt Hoffa 1992 DeVito, Danny Mamet, David
Mam_Homicide.txt Homicide 1991 Mamet, David Mamet, David
Mam_HouseGames.txt House of Games 1987 Mamet, David Mamet, David and Jonathan Katz
Mam_Oleanna.txt Oleanna 1994 Mamet, David Mamet, David
Mam_SpanishP.txt Spanish Prisoner, The 1997 Mamet, David Mamet, David
Mam_Spartan.txt Spartan 2004 Mamet, David Mamet, David
Mam_StateMain.txt State and Main 2000 Mamet, David Mamet, David
Mam_HANNIBAL.txt Hannibal 2001 Scott, Ridley Mamet, David and Zaillian,

Steven
mum_DanceParty8.txt Dance Party, USA 2006 Katz, Aaron Katz, Aaron
mum_FunnyHa.txt Funny Ha Ha 2002 Bujalski, Andrew Bujalski, Andrew
mum_HannahTakes.txt Hannah Takes the Stairs 2007 Swanberg, Joe Swanberg, Gerwig, Osborne, etc.
mum_LOL.txt LOL 2006 Swanberg, Joe Brewersdorf and Swanberg and

Wells
mum_PuffyChair2.txt Puffy Chair, The 2005 Duplass, Jay, and Mark Duplass, Jay, and Mark
mum_QuietCity.txt Quiet City 2007 Katz, Aaron Katz, A. and Fisher, E. and

Lankenau, C.
Sayl_CasaBabys.txt Casa de los babys 2003 Sayles, John Sayles, John
Sayl_HoneyDrip.txt Honeydripper 2007 Sayles, John Sayles, John
Sayl_Limbo.txt Limbo 1999 Sayles, John Sayles, John
Sayl_LoneStar.txt Lone Star 1996 Sayles, John Sayles, John
Sayl_PassionFish.txt Passion Fish 1992 Sayles, John Sayles, John
Sayl_SunState.txt Sunshine State 2002 Sayles, John Sayles, John
Sham_Happening.txt Happening, The 2008 Shyamalan, M. Night Shyamalan, M. Night
Sham_LadyWater.txt Lady in the Water 2006 Shyamalan, M. Night Shyamalan, M. Night

(continued)
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The third operation to perform on this corpus is us-
ing R-stylo’s Bootstrap Consensus Trees classifier on it
(Fig. 6).

The differentiation of the works of the different
authors is not perfect, and not superior to that in the
preceding Cluster Analysis output.

3. Mumblecore

One of the most notable things about these graphs is
that the mumblecore group of films, together with
three of the Noah Baumbach scripts, are almost
completely separated from all the other films.
The language in them that causes this is hesitational
interjections like ‘um’ and ‘uh’, which are part of
what gives mumblecore its name, and these words are
seven times more frequent than in the rest of the films
of the author sample. But the most important differ-
ence is that ‘I’ is used nearly three times more fre-
quently in mumblecore than in the other films. This
corresponds to the self-obsessed nature of the charac-
ters in these films, which is their main distinguishing
trait, as opposed to the characters in all other films.

4. Joint authorship analysis

The R-stylo package provides an SVM rolling classify
algorithm intended to reveal any joint authorship of a
text, and I have applied this to the two dialogue
scripts of Hannibal in the approved way. The setting
was mfw¼ 100, slice size¼1000, and slice over-
lap¼750. For the reference texts in this analysis, I

used A Civil Action, American Gangster, and All the
King’s Men by Steven Zaillian, and Heist, Hoffa, and
Homicide by David Mamet. The test specimen was
Zaillian’s dialogue for Hannibal. The result is
provided in Fig. 7.

The suggestion from this analysis that one or more
sections of the Zaillian script includes material written
by Mamet is completely wrong. The first script for
Hannibal was written by David Mamet, and then dis-
carded for a completely rewritten script by David
Zaillian, according to the testimony of those writers.
As well as visual inspection of the dialogue texts of the
two screenplays, I ran them through Plagiarism Checker
X. When set to detect four word groups, this pro-
gramme highlights many banal phrases like ‘Special
Agent Clarice Starling’, ‘Do you know what’, ‘What do
you say’, and ‘What do you think’, so I used the six-
word setting. This gave only thirteen six-word sections
of dialogue in common, out of approximately 10,000
words. In both scripts, the dialogue in the Hannibal
novel by Thomas Harris is almost completely re-written,
except for these very short sections, which are taken al-
most verbatim in both. But these short sections do not
occur in any of the places indicated in the above two
graphs, so the SVM algorithm is in error in this case.

A further trial of the SVM algorithm can be made on
the dialogue of Jason Bourne. Although this is classified
with the other Bourne films, all written by Tony Gilroy,
Gilroy actually had no hand in it, and the script was
written by the director, Paul Greengrass, with the help of
his editor, Christopher Rouse. The SVM programme us-
ing a reference set of the Gilroy written films Beirut and

Table 1. (continued)

Dialogue file name Film title Year Director Script writers

Sham_Signs.txt Signs 2002 Shyamalan, M. Night Shyamalan, M. Night
Sham_SixthSense.txt Sixth Sense, The 1999 Shyamalan, M. Night Shyamalan, M. Night
Sham_Unbreakable.txt Unbreakable 2000 Shyamalan, M. Night Shyamalan, M. Night
Sham_Village.txt Village, The 2004 Shyamalan, M. Night Shyamalan, M. Night
sork_AmPres.txt American President, The 1995 Reiner, Rob Sorkin, Aaron
sork_GoodMen.txt Few Good Men, A 1992 Reiner, Rob Sorkin, Aaron
sork_MollysGame.txt Molly’s Game 2017 Sorkin, Aaron Sorkin, Aaron and Bloom, Molly
sork_SocialN.txt Social Network, The 2010 Fincher, David Sorkin, Aaron and Mezrich, Ben
sork_SteveJobs.txt Steve Jobs 2015 Boyle, Danny Sorkin, Aaron and Isaacson,

Walter
Wood_AnythingElse.txt Anything Else 2003 Allen, Woody Allen, Woody
Wood_BlueJasmin.txt Blue Jasmine 2013 Allen, Woody Allen, Woody
Wood_CurseJade.txt Curse of the Jade Scorpion, The 2001 Allen, Woody Allen, Woody
Wood_HwoodEnd.txt Hollywood Ending 2002 Allen, Woody Allen, Woody
Wood_MidnightParis.txt Midnight in Paris 2011 Allen, Woody Allen, Woody
Wood_RainDayNY.txt Rainy Day in New York, A 2019 Allen, Woody Allen, Woody
Wood_SmallTime.txt Small Time Crooks 2000 Allen, Woody Allen, Woody
Wood_SweetLow.txt Sweet and Lowdown 1999 Allen, Woody Allen, Woody
Zaill_Hannibal.txt Hannibal 2001 Scott, Ridley Zaillian, Steven
Zaill_CivilAction Civil Action, A 1998 Zaillian, Steven Zaillian, Steven
Zaill_AmerGangster American Gangster 2007 Scott, Ridley Zaillian, Steven
Zaill_AllKings All the King’s Men 2006 Zaillian, Steven Zaillian, Steven
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The Bourne Legacy, together with the Greengrass
scripted films Bloody Sunday and United 93, and work-
ing on the test dialogue of Jason Bourne (Fig. 8).

The implication that Gilroy wrote half the script is
just plain wrong, so this is another failure for the SVM
programme. It has been fooled by the intentional re-
creation by Paul Greengrass and Christopher Rouse of
Gilroy’s dialogue writing style used in the previous
Jason Bourne films.

However, a further test of the SVM programme with
the Robert Rossen screenplay of All the King’s Men,
based on Robert Penn Warren’s novel, which was di-
rected by Rossen and released in 1949, using reference
scripts by Robert Rossen (Alexander the Great, Johnny
O’Clock, A Walk in the Sun), and by Steve Zaillian
(American Gangster, A Civil Action, Hannibal) who
wrote and directed a new version of the Penn Warren
novel in 2006 (Fig. 9).

It is just as well that this test shows no trace of
Zaillian’s writing, as he had not been born in 1949.
And the SVM rolling tool is not wrong in this particu-
lar case. But it is being aided by the 60-year period dif-
ference between the Rossen and Zaillian texts, which
swamps the fact that they are working from the same
material.

5. The zeitgeist speaks

History exerts a pressure on film dialogue, as can be
shown by comparing my author corpus with dialogue
from thirteen American films released in 1939.
Including these films gives the following principal com-
ponents (Fig. 10).

The 1939 scripts are all in the upper part of the
graph, almost separated from the recent films.
However, the gangster film Each Dawn I Die is almost

Rolling SVM for Jason Bourne to detect contributions from Gilroy and Greengrass

Figure 7.

Rolling SVM for Hannibal to detect contributions from Mamet and Zaillan

Figure 6.
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down into the bottom half of the graph, where the
more recent tough stuff lives.

There are obvious changes in conversational vocabu-
lary over six decades in both the real world, and also the
filmic world, but the one that stands out for me is the oc-
currence of the word ‘church’. In the thirteen films of the
1939 sample, ‘church’ is used seventy times, whereas in

the seventy-three films of the author corpus, it is only
used twenty-seven times. That is, sixteen times less.
More importantly, there are vast numbers of obscene
words, such as ‘fuck’, in most of the recent films, but
none at all in the 1939 films. More importantly, there
are many informal contractions of words and phrases
that were hardly used in 1939 films, but which are now
common. One instance is ‘gonna’ for ‘going to’. It existed
in 1939, but parents and teachers beat it out of children
in those days. Other 1939 lower class colloquialisms that
differentiate recent films from pre-war films include
‘gotta’, ‘wanna’, ‘yeah’, ‘Hi’, and ‘hey’. For the record,
the result of using the cluster algorithm on this expanded
corpus including the 1939 films is provided in Fig. 11.

6. The doctor will see you now

Some interesting results follow from inserting the films
about Dr. Hannibal Lecter’s life and works into my author
group of films. The complete group of these Lecter films is
provided in Table 2.

And when these are added to a reduced author cor-
pus of drama scripts only, R-stylo cluster analysis is
produced (Fig. 12).

Nearly all the Lecter films come together into a clus-
ter between the Sorkin films and the Sayles films, ex-
cept for Hanibal Rising, which is far away among the
1939 films. This film is, of course, unusual in that
Thomas Harris wrote the screenplay, as well as the
source novel, and Harris has had no previous experi-
ence in writing film scripts. Also, not surprisingly, 16
per cent of the dialogue in Harris’ script comes straight
from his novel. This compares with the under 1 per
cent of his dialogue used by Mamet and Zaillian when
writing their scripts from his novel Hannibal. A glance
at the dialogue text of the film Hannibal Rising shows
that the low-life characters don’t use as much argot in
a way that is usual in other contemporary films, and it
is this that moves this film (and also The Village) back
into the past. I think that the old-fashioned dialogue
writing in The Village was used intentionally by M.
Night Shyamalan, and is part of the plot, but I am not
sure that Thomas Harris did it on purpose.

7. Conclusion

The main conclusions I draw from my use of the R-
stylo package on the dialogue texts of American feature
films are that the dialogues in present day feature films
are less individual than might be supposed. The genre
of a film does have a limited effect on the dialogue in it,
but only in the case of the recent new category of mum-
blecore films does it have an influence that surpasses
that of their individual writers. The world represented
in that particular genre of films shows through clearly
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into the statistics. Another very important general re-
sult is that the setting of the range of the most frequent
word vectors has a big influence on the results one gets.
Yet another surprising result is that using n-gram fre-
quencies rather than single word frequencies makes
classification worse rather than better. An obvious

supposition about literary style is that part of it resides
in the habitual phrases that any writer uses. This effect,
if it exists, is not recognizable in film dialogue using the
methods in the R-stylo package.

From my tests, it seems that the SVMs rolling classi-
fication algorithm can be uncertain about correctly

Figure 12.

Table 2.

Dialogue file name Film title Year Director Script writers

TH_Manunter.txt Manhunter 1986 Mann, Michael Mann, Michael
TH_RedDrag.txt Red Dragon 2002 Ratner, Brett Tally, Ted
Mam_HANNIBAL.txt Hannibal 2001 Scott, Ridley Mamet, David and Zaillian, Steven
Zaill_Hannibal.txt Hannibal 2001 Scott, Ridley Mamet, David and Zaillian, Steven
TH_SilenceLamb.txt Silence of the Lambs, The 1991 Demme, Jonathon Tally, Ted
TH_HannibalRis.txt Hannibal Rising 2007 Webber, Peter Harris, Thomas
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identifying sections of a text written by different
writers.

As can be clearly seen in the case of the Bourne films, it
is quite possible for new writers to imitate the dialogue style
of the preceding films in a series, when writing a new script.
In most ordinary films, the dialogue is there to advance the
plot, to represent the push and pull between the characters,
and literary distinctiveness is not generally helpful in this.
To go beyond classification to the reason it works, I have
had to use the AntConc programme Keywords tool. Here,
the use of negative keywords is particularly useful in find-
ing the particular words that power the R-stylo classifica-
tion process. The next level beyond word counting requires
functional analysis of the relation of the dialogue words to
the narrative. That is easy to say, but hard to do.
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